Сообщение

Электроинструменты

Содержание материала

У домашнего мастера может быть большое количество электроинструментов, если он серьезно занимается столярными работами, мастерит мебель, ремонтирует квартиру или строит своими руками загородный дом. Здесь рассказывается о некоторых из них.

Электропаяльник

Электропаяльник занимает далеко не последнее место в арсенале домашнего мастера: прокладывается ли электропроводка, производится ли ее ремонт, ремонтируются ли электродвигатели – всюду потребуются паяные соединения.

Бытовые электропаяльники могут быть с непрерывным и периодическим нагревом.

Электропаяльник непрерывного нагрева представляет собой простейшее устройство из массивного паяльного стержня (нагревательная спираль, намотанная на металлическую трубку, изолированную слоем слюдопласта), заканчивающегося паяльным жалом, жаропрочной ручки и электрошнура.

В электросхему паяльника периодического нагрева включен понижающий трансформатор, который препятствует перегреву паяльного жала. Конструкция такого паяльника изображена на рис. 94.

clip_image001

Рис. 94. Электропаяльник периодического нагрева: 1 – трансформатор; 2 – корпус; 3 – шина; 4 – паяльный стержень; 5 – сигнальная лампа; 6 – выключатель; 7 – электрический шнур.

Паяльный стержень прибора периодического нагрева выполнен из толстой проволоки в виде петли; он имеет очень небольшую массу, поэтому его нагрев до рабочей температуры осуществляется за несколько секунд.

Диапазон мощности электропаяльников достаточно широк: от 10–26 Вт для маломощных радиомонтажных до 40–65 Вт для электротехнических и до 100 Вт для медницких паяльников.


Электродрель

Электродрель стала одним из самых необходимых инструментов. Без нее не обходится ни один ремонт. Ряд дополнительных насадок, которыми оборудованы последние модели, позволяет расширить диапазон применения этого инструмента.

Электродрели предназначены для сверления отверстий в стене, в массиве древесины и т. п. Этот инструмент состоит из электромотора, который через последовательную цепь креплений соединяется со шпинделем патрона для сверла. Чаще всего для этой операции используются спиральные сверла. Кроме прямого назначения, электродрель применяют для полировки, шлифовки, размешивания красок и т. д.

В ходе работы сверло должно проникать в массив постепенно, без рывков и толчков. Если необходимо сделать сквозное отверстие, то нажим на древесину по мере продвижения сверла необходимо уменьшить.

 

Электропилы

Электропилы служат для поперечного и продольного распиливания материалов, например досок и брусков. Кроме этого, ими можно производить пиление под определенным углом.

При изготовлении например, мебели, рекомендуют использовать электроножовки, в комплект которых входят различные сменные пилки, позволяющие распилить не только фанеру и дерево, но и современный листовой материал с покрытием. Электроножовка справляется с такими материалами, как твердое дерево, гипсокартон, пластик и кирпич.

Дисковые и цепные электропилы значительно сокращают затраты времени на распиловку лесоматериалов, но для выполнения тонкой работы они не годятся. Наибольшее применение находят пилы следующих марок: ИЭ‑5107, К‑5М, ЭП‑5КМ.

Для распиливания необтесанных бревен, кряжей нужны пилы марки ЭП‑К6.

В качестве режущей части у таких пил выступает пильная цепь, которая состоит из зубьев, соединенных между собой шарнирами.

Работа с перечисленными пилами требует соблюдения правил техники безопасности.

1. При пилении во влажном помещении напряжение в сети не должно превышать 36 В.

2. Транспортировать пилу можно, только поместив ее в чехол.

3. После окончания работы пилу необходимо убрать в специально отведенное для нее место.

Работая электропилой, следует помнить, что это инструмент, который является источником повышенной опасности. Купив такую пилу, прежде всего следует внимательно изучить устройство пилы и правила ее эксплуатации. Перед началом работы снимают втулку и заполняют смазкой сальник. Через каждые 25–30 часов работы смазку повторяют.

Ручная дисковая пила ИЭ‑5107 имеет достаточно высокую частоту вращения диска – 2940 оборотов в минуту, что обеспечивает электродвигатель мощностью 750 Вт, поэтому ею распиливают древесные материалы толщиной до 65 мм, а специальное приспособление позволяет менять угол наклона режущей части от 0 до 45°.

Эта пила имеет электродвигатель с однофазным коллектром и работает от обычной электросети с напряжением 220 В.

Перед работой проверяют правильность заточки и разведения зубьев пилы и прочность посадки диска на шпиндель. Диск не должен иметь трещин и повреждений. В целях проверки состояния редуктора слегка проворачивают диск. Если проворачивание диска происходит с затруднением, следует сделать смазку более жидкой. Этого можно достичь, включив на 1 минуту холостой ход инструмента.

Перед тем как приступить к работе, распиливаемый материал закрепляют на верстаке. После этого правой рукой захватывают заднюю рукоятку пилы, а левой – переднюю и устанавливают режущую часть пилы на материал. Направляют пилу по намеченной линии легко и плавно, так как при резких толчкообразных движениях может заклинить диск инструмента, вследствие чего возможна поломка электродвигателя.

Если все же диск заклинило, отводят пилу назад. Это делают для того, чтобы диск вышел и набрал необходимую частоту вращения. Только после этого продолжают работу.

После окончания работы инструмент отключают и обтирают ветошью, смоченной в керосине.

Работа с электропилой требует повышенного внимания и точного соблюдения технологии работы. Отклонения от порядка работы и невнимательность грозят обернуться серьезными травмами. Поэтому, если обнаружено какое‑либо отклонение от нормальной работы электропилы, ее следует немедленно выключить и разобраться с причиной отказа. Если поломка серьезная, лучше всего обратиться за помощью в специализированную мастерскую.


Электрорубанки

Электрорубанки используют для выравнивая поверхности древесной плиты или доски вдоль волокон. Строгание поверхности производят вращающимися фрезами, которые приводятся в движение электромотором. Опускающаяся и поднимающаяся передняя лыжа изменяет глубину проникновения режущей фрезы в массив древесины. Если снять защитный кожух и закрепить рубанок на верстаке, то получится станок, который часто используется в деревообрабатывающем производстве.

Электрорубанок ИЭ–5707А помогает достаточно быстро обработать поверхность большой площади. Рубанком можно производить обработку древесной поверхности шириной 100 мм и глубиной 3 мм. Его режущими элементами являются вращающиеся фрезы, приводимые в действие электромотором. Можно варьировать глубину обработки. Электрорубанок может работать от бытовой сети. Перед работой с электрорубанком обязательно закрепляют доску на верстаке. Передвигают рубанок только по направлению роста волокон и следят за тем, чтобы стружка и опилки не попадали под лыжи. После двух‑трех проходов делают перерыв, во‑первых, чтобы проверить степень обработки детали, а во‑вторых, чтобы избежать перегрева электромотора инструмента. Ножи рубанка затупляются через 2–3 часа работы, и качество строгания становится значительно хуже. При перерыве в работе ставят рубанок на бок или лыжами вверх.

Стружка и опилки могут попасть под направляющие рубанок лыжи, тогда глубина среза древесного слоя может измениться, поэтому надо следить за этим.

Причинами неравномерной обработки поверхности древесины может быть неправильное и неравномерное расположение фрез и затупление их режущей части. Возможно также и забивание скользящей поверхности большим количеством опилок или стружки.

Перегрев мотора электрорубанка и выход его из строя может произойти из‑за нажатия на инструмент сверху во время работы и от отсутствия смазки в сальниках.

Обрабатываемая электрорубанком поверхность не всегда получается ровной и гладкой. Первый дефект возникает при неправильном и неравномерном расположении режущих фрез в пазу относительно уровня лыж. Второй дефект является результатом использования тупых фрез.

Меры безопасности при работе с электрорубанком заключаются в основном в исправности проводки, в осторожном обращении с режущим инструментом и в выключении инструмента на время перерыва.

После работы электрорубанком необходимо вынуть фрезы из пазов, очистить их керосином и уложить инструмент в коробку.


Электродолбежник

Электродолбежник используют для выборки древесины под прямоугольные гнезда для крепления деталей. Основная часть этого инструмента – долбежная цепь, которая состоит из небольших резцов, связанных между собой шарнирами.

Для получения гнезд различных размеров необходимо только поменять пластинку, на которой крепится долбежная цепь, глубину же выборки регулируют с помощью опускания ручки.

Чтобы получить ровные края гнезда крепления, сначала затачивают или зачищают резцы, а только потом готовят станок к работе. Затем закрепляют доску или деталь на верстаке, устанавливают на ней станок и включают его.

Если закрепить электродолбежник на верстаке, получится неподвижный станок. При работе с долбежным станком необходимо соблюдать меры предосторожности. Прежде всего они заключаются в правильном креплении долбежной цепи, исправности электропроводки, правильной подаче массива древесины при использовании закрепленного станка. Если станок не закреплен, то обязательно следят за тем, чтобы хорошо был закреплен брусок. Нельзя работать с незаземленным станком.


Электронасосы

В сельской местности, где нет централизованного водоснабжения, среди домашнего электрооборудования наверняка есть электрический насос для поднятия воды из колодцев и скважин.

Конструктивно любой электронасос состоит из двух частей: двигателя, работающего от электросети, и собственно насоса. По принципу действия различают два типа насосов: центробежные («Кама», «Агидель», «Урал») и вибрационные («Малыш», «Струмок», «Родничок»).

Механизм центробежного насоса (рис. 95) состоит из рабочего колеса с лопастями, всасывающего трубопровода и приемного устройства с обратным клапаном.

clip_image002

Рис. 95. Электронасос центробежного типа «Кама»: 1 – подставка; 2 – основание корпуса; 3 – прокладка; 4 – помехоподавляющее устройство; 5 – электродвигатель; 6 – крышка насоса; 7 – сальник; 8 – рабочее колесо; 9 – приемное устройство.

Забор воды из водоносной жилы, колодца или водоема и ее транспортировка к месту потребления осуществляются следующим образом: при вращении рабочего колеса во всасывающем патрубке образуется вакуум, за счет чего вода непрерывно поступает во всасывающий трубопровод и под воздействием центробежной силы выбрасывается из корпуса насоса в напорный трубопровод, по которому поступает в резервуар или на раздачу.

Обязательным условием работы центробежных насосов является наличие воды в рабочем колесе и всасывающем трубопроводе перед включением его в сеть. Для удержания воды в этих деталях на то время, пока насос бездействует, предназначено приемное устройство, снабженное фильтром и обратным клапаном. При установке насоса необходимо проследить за тем, чтобы приемное устройство было расположено строго вертикально, поскольку обратный клапан закрывается под действием собственного веса. Прежде чем запустить насос в работу впервые или после ремонта, в его корпус следует предварительно налить воду.

Для того чтобы оградить электродвигатель от попадания на него влаги, вал, выходящий из насоса для насадки электродвигателя, уплотнен сальником, который состоит из двух резиновых манжет и вставки между ними; крепится сальник с помощью двух шайб и стягивающей гайки.

Чтобы КПД центробежного насоса был максимальным, зазор между выступами рабочего колеса и расточками в крышке и корпусе насоса не должен превышать 0,15 мм. Производительность центробежных насосов – до 1,5 м3/ч; рассчитаны они на напор в 17 м, максимальная высота всасывания – до 7 м.

Действие насосов вибрационного типа основано на использовании электромагнитных колебаний: под действием частоты тока электромагнит создает колебания, передаваемые клапану‑поплавку, мембрана которого начинает вибрировать, захватывая воду из водоносного слоя и проталкивая ее по трубопроводу. Конструкция клапана препятствует обратному току воды.


При работе насос вибрационного типа должен быть полностью погружен в воду (рис. 96).

clip_image003

Рис. 96. Установка электронасоса вибрационного типа: а – в обсадной трубе скважины; б – в колодце; 1 – насос; 2 – кольцо; 3 – связка провода со шлангом; 4 – капроновая подвеска; 5 – пружинная подвеска; 6 – провод; 7 – шланг.

Рабочие параметры электронасосов вибрационного типа: мощность – до 300 Вт, напор – до 40 м, максимальная высота всасывания – до 40 м, производительность – от 0,5 до 1,5 м3/ч (в зависимости от марки), время непрерывной работы – 2 часа (после чего устраивается перерыв на 15–20 минут).

Несомненно, перечень бытовой электротехники не ограничивается лишь теми приборами, о которых здесь велась речь. Наверняка у многих имеются вентиляторы, фены, конвекторы, сплит‑системы, посудомоечные машины, однако все эти устройства являются приборами достаточно сложными (и дорогостоящими), чтобы пытаться самостоятельно производить их ремонт, не обладая специальными знаниями. А о том, как устранить мелкие неполадки в виде испорченного электрошнура или штепсельной вилки, сказано уже достаточно.

Заканчивая разговор о бытовых электроприборах, хочется еще раз напомнить, что качество работы и продолжительность срока службы зависят не только от их технических характеристик, но и от отношения к ним. Поэтому следует запомнить некоторые полезные советы по уходу за домашними электрическими приборами и электропроводкой.

1. Неожиданное отключение света в квартире еще не повод, чтобы лезть в общий электрощиток в поисках причины. Для начала лучше убедиться, что неисправность не скрыта во внутренней электропроводке. Самый простой способ – побеспокоить соседей, поинтересоваться наличием электричества у них. Если беда общая, значит, неисправность кроется в наружной проводке, и единственное, что можно сделать, – вызвать мастера из ДЭЗа.

Если же у соседей с электричеством полный порядок, следует приступить к поиску неполадок во внутренней электропроводке.

2. Зачастую срабатывание автоматических выключателей или плавких предохранителей происходит не из‑за короткого замыкания, а от перегруженности домашней электролинии (то есть суммарная мощность всех приборов, подключенных к сети, очень велика); иными словами, сила тока, необходимая для питания включенных приборов, больше той, на которую рассчитаны предохранители. Поэтому при срабатывании предохранителей не нужно сразу же бежать на поиски короткого замыкания, разумнее заняться расчетами.

Предположим, суммарная мощность одновременно работающих приборов – 2500 Вт. Если напряжение в сети 220 В, то сила тока, необходимая для питания приборов, – 2500: 220 = 11,4 А. Поэтому если предохранители на электросчетчике или щитке рассчитаны на 10 А, то дело вовсе не в коротком замыкании – следует установить предохранители, рассчитанные на большую силу тока.

Но при оснащении счетчика или щитка предохранителями, рассчитанными на силу тока большую, чем позволяет электропроводка, можно избавиться от вылетающих пробок, а от вышедшей из строя электропроводки (по причине сгорания проводов) – вряд ли получится.

3. Не стоит спешить ремонтировать сложные бытовые электроприборы самостоятельно, если нет уверенности, что все получится. Ведь вполне может быть, что результатом ремонтных экспериментов окажется абсолютно непригодный к использованию прибор и горстка лишних запасных частей, оставшихся после сборки.

Целесообразнее ремонт сложной техники поручить специалистам.


Электродвигатели

В предыдущей главе среди конструктивных элементов многих приборов назывались электродвигатели, однако о неполадках двигателей не было написано ни слова. Вопрос этот достаточно емкий и заслуживает выделения в отдельную главу. Настоящая глава целиком посвящена электродвигателям: их классификации, устройству, рабочим параметрам, правилам эксплуатации.

Классификация электродвигателей

В зависимости от вида тока, используемого в электрической машине, все двигатели подразделяются на двигатели постоянного и переменного тока, а также универсальные (коллекторные). Каждый тип двигателей имеет как достоинства, так и недостатки.

Устройство двигателей переменного тока более простое, следовательно, и работать с ними значительно легче. Однако регулировать частоту вращения таких двигателей практически невозможно. Это ограничивает область их применения приборами, в которых нет необходимости регулировать частоту вращения, например в электропилах и подобных механизмах.

Конструктивно в самом общем виде электрические двигатели переменного тока состоят из двух главных частей: неподвижной части – статора и вращающейся части – ротора (рис. 97).

clip_image001[5]

Рис. 97. Устройство трехфазного двигателя серии 4А: 1 – вал; 2 – фиксирующая шпонка; 3 – подшипник; 4 – статор; 5 – обмотка статора; 6 – ротор; 7 – вентилятор; 8 – коробка выводов; 9 – лапа.

Выпускают их однофазными и многофазными, а потребляемая мощность находится в диапазоне от 0,2 до 200 кВт и более.

Конструкция двигателей постоянного тока также включает в себя подвижную часть – якорь и неподвижную – статор. Обмотки статора и якоря в этих двигателях могут быть соединены последовательно, параллельно и комбинированно. Их неоспоримое преимущество перед двигателями переменного тока – возможность регулирования частоты вращения. Используются они в основном в промышленных установках, где существует точное ограничение частоты вращения.

В бытовых электроприборах – холодильниках, пылесосах, соковыжималках и т. п. – используются универсальные коллекторные двигатели, рассчитанные на работу как от переменного тока частотой 50 Гц (напряжением 127 и 220 В), так и от постоянного тока (напряжением 110 и 220 В).

Коллекторные двигатели обладают невысокой мощностью – до 600 Вт; максимальная частота вращения – до 8000 оборотов в минуту. Частота вращения в них регулируется изменением величины подводимого к их обмоткам напряжения: если двигатель маломощный, то изменение напряжения производят подключением реостата; для двигателей более мощных используется трансформатор.

Преимуществом коллекторных двигателей является прежде всего их универсальность. К недостаткам же следует отнести невозможность работы на малых нагрузках, то есть вхолостую (двигатель в таком режиме перегревается); низкий КПД при работе на переменном токе; возникновение радиопомех при работе двигателя. Правда, последний недостаток можно уменьшить, если обмотку возбуждения симметрировать, то есть включить с обеих сторон якоря.


Технический паспорт электродвигателя

Поскольку существует большое количество типов и марок электродвигателей, привести в этой книге все их технические параметры не представляется возможным. Да этого и не требуется, так как каждый двигатель заводского производства имеет технический паспорт, выполненый в виде металлической таблички, которая закрепляется непосредственно на корпусе двигателя. А вот правильно прочесть этот паспорт нужно уметь.

В паспорте двигателя указываются все его технические характеристики, необходимые для его подключения, а именно:

- тип двигателя; его заводской номер;

- вид тока, от которого работает двигатель;

- номинальная частота переменного тока (в Гц);

- номинальная полезная мощность на валу двигателя;

- коэффициент мощности;

- вид соединения обмотки статора и необходимое в каждом из этих случаев напряжение сети (в В);

- потребляемый ток при номинальной нагрузке (в А);

- режим работы по длительности;

- частота вращения при номинальной нагрузке;

- номинальный коэффициент полезного действия; степень защиты;

- а также ГОСТ, класс изоляции обмотки, масса и год выпуска.

Доскональное описание устройства всех типов электродвигателей целью этой книги не является. Поскольку ремонт электродвигателей – дело сложное, требующее не только специальных знаний, но и наличия нужного оборудования, то его лучше поручить мастерам. Задачей же домашнего электрика является обеспечение правильной эксплуатации исправного двигателя.


Обозначение выводов обмоток двигателей различного типа

Несомненно, домашний электрик должен уметь правильно подключить электродвигатель к сети, и основная загвоздка здесь – количество выводов различного рода обмоток: их достаточно много, в них трудно разобраться. Большую помощь окажет знание условных унифицированных обозначений, применимых к отечественным электродвигателям.

Наибольшую сложность представляет подключение двигателя постоянного тока; здесь количество выводов может быть больше десяти. Обозначаются они начальными буквами слов, отражающих их функциональное назначение:

Я1 и Я2 – начало и конец обмотки якоря;

К1 и К2 – начало и конец компенсационной обмотки;

Д1 и Д2 – начало и конец обмотки добавочных полюсов;

С1 и С2 – начало и конец последовательной (сериесной) обмотки возбуждения;

Ш1 и Ш2 – начало и конец параллельной (шунтовой) обмотки возбуждения;

У1 и У2 – начало и конец уравнительного провода соответственно.

Разобраться с двигателями переменного тока, имеющими значительно меньшее количество выводов, намного проще:

– если обмотки статора трехфазных двигателей переменного тока соединены звездой, то начало статорных обмоток обозначается как С1, С2 и С3 (соответственно первой, второй и третьей фазы); нулевая точка – 0. Если статорная обмотка имеет шесть выводов, то обозначения С4, С5 и С6 указывают на концы обмоток (соответственно первой – 4, второй – 5 и третьей фазы – 6);

– если соединение обмоток статора осуществляется треугольником, то обозначения С1, С2 и С3 определяют зажимы соответственно первой, второй и третьей фаз.

Трехфазные асинхронные двигатели имеют выводы роторных обмоток, обозначаемые как Р1, Р2 и Р3 (соответственно первой, второй и третьей фаз), 0 обозначает нулевую точку. Выводы обмоток асинхронных многоскоростных двигателей обозначаются: для 4 полюсов – 4С1, 4С2 и 4С3; для 8 полюсов – 8С1, 8С2 и 8С3. В асинхронных однофазных двигателях выводы главной обмотки обозначаются: С1 – начало, С2 – конец. Для выводов пусковой обмотки этих же двигателей приняты обозначения: П1– начало, П2 – конец.

Выводы обмотки возбудителя синхронных двигателей, которые носят название индукторов, обозначаются как И1 и И2 (соответственно начало и конец обмотки).

Для того чтобы при подсоединении выводов обмоток коллекторных машин было как можно меньше путаницы, на заводах‑изготовителях и в ремонтных мастерских их помечают разными цветами: выводы обмотки якоря – белым цветом; последовательной обмотки возбуждения – красным (если она имеет дополнительный вывод, то его помечают красным и желтым цветами); параллельной обмотки возбуждения – зеленым. Для определения начал и концов обмоток последние всегда помечаются добавленным к основному черным цветом; таким образом получается, что начала обмоток имеют одноцветные пометки, а концы – двухцветные.

Цветовая пометка выводов обмоток электродвигателей является дополнением к буквенной. Однако в электромоторах малой мощности обмотки выполняются проводами, толщина которых не позволяет применить буквенное обозначение, поэтому цветовая маркировка является здесь основной и единственной.

В трехфазных двигателях начало первой фазы обозначается желтым цветом, начало второй – зеленым, начало третьей – красным, черный цвет указывает на нулевую точку. При шести выводах маркировка начала обмоток сохраняется, а маркировка концов производится основным цветом с добавлением черного.

Выводы обмоток асинхронных однофазных двигателей в маркировке имеют следующие цвета: начало главной обмотки обозначается красным проводом, начало пусковой обмотки – синим, в маркировке концов обмоток, как обычно, помимо основного цвета, присутствует черный.


Изменение параметров трехфазного асинхронного двигателя

Как известно, наши электрические сети не отличаются постоянством параметров тока. Поэтому необходимо знать, как меняются параметры электродвигателей при условиях, отличных от номинальных.

Если в сети питания трехфазного асинхронного двигателя происходит понижение напряжения (при сохранении номинальной частоты переменного тока), его вращающий момент уменьшается, а коэффициент полезного действия падает. При повышении напряжения (и сохранении номинальной частоты тока) вращающий момент растет, что приводит к перегреву двигателя и к уменьшению коэффициента полезного действия.

Как говорится, от перемены мест слагаемых сумма не изменяется. Поэтому если постоянным остается напряжение, а частота переменного тока уменьшается, то КПД по‑прежнему ухудшается: частота вращения двигателя уменьшается, и он начинает греться. К аналогичному результату приводит и повышение частоты переменного тока при сохранении номинального напряжения. 

Подключение трехфазного двигателя к однофазной сети

Электродвигатели, как известно, бывают однофазными и трехфазными; бытовая электрическая сеть имеет одну фазу. Возникает вопрос: можно ли подсоединить трехфазный двигатель к однофазной сети. Несмотря на кажущееся неразрешимым противоречие, такое подключение осуществить можно, причем существует несколько способов.

Первые два способа подключения электродвигателей (рис. 98) основаны на использовании рабочего (Ср) и пускового (Сп) конденсаторов.

clip_image002[5]

Рис. 98. Схема подключения трехфазного электродвигателя к однофазной сети с помощью конденсаторов: а – при включении электродвигателя «в звезду»; б – при включении электродвигателя «в треугольник».


Пусковой конденсатор увеличивает пусковой момент, и после пуска двигателя его отключают. Но если пуск двигателя осуществляется без нагрузки, то конденсатор Сп в цепь не включают.

Для рабочего конденсатора, включаемого в цепь, необходимо рассчитать емкость. Расчет производится по формуле: Ср = К (Iном/U), где Ср – рабочая емкость конденсатора для номинальной нагрузки (в микрофарадах – мкФ); Iном – номинальная сила тока (в амперах – А); U – номинальное напряжение в однофазной сети (в вольтах – В); К – коэффициент, который зависит от схемы включения двигателя. При включении электродвигателя «в звезду» К = 2800, при включении «в треугольник» К = 4800.

За номинальную силу тока и напряжения принимают значения указанных параметров, приведенных в техническом паспорте электродвигателя.

Для подключения трехфазных двигателей к однофазной сети с помощью конденсаторов используются следующие их типы: КБГМН (бумажный, герметический, в металлическом корпусе, нормальный), БГТ (бумажный, герметический, термостойкий), МБГЧ (металлобумажный, герметический, частотный).

Если возникает необходимость произвести изменение направления вращения электродвигателя (реверсирование), то это легко сделать, переключив сетевой провод с одного зажима конденсатора на другой.

Пусковые конденсаторы могут иметь следующие технические параметры: напряжение на конденсаторе при номинальной нагрузке должно быть равно напряжению в сети (а при работе двигателя с недогрузкой напряжение на конденсаторе должно быть в 1,15 раза больше напряжения в сети); пусковая емкость должна составлять 2,5–3 рабочей емкости.

В качестве пускового конденсатора чаще всего применяется дешевый электролитический конденсатор типа ЭП. Но при использовании электролитического конденсатора следует помнить, что он обладает большим током разряда, оставаясь заряженным даже после отключения напряжения. Поэтому после каждого отключения конденсатор необходимо разрядить с помощью какого‑либо сопротивления, например нескольких ламп накаливания, соединенных последовательно.

Использование конденсаторов для включения трехфазного двигателя в однофазную сеть весьма эффективно, поскольку позволяет получить мощность, составляющую 65–85 % от той, что указана в паспорте двигателя. Но здесь могут возникнуть затруднения с подбором нужной емкости конденсаторов. Поэтому гораздо большее распространение получили способы включения с применением активных сопротивлений (рис. 99).

clip_image003[5]

Рис. 99. Схема включения трехфазного электродвигателя в однофазную сеть с помощью активного сопротивления: а – включение электродвигателя «в треугольник»; б – включение электродвигателя «в звезду».

Непосредственно перед подключением электродвигателя к однофазной сети следует включить пусковое сопротивление; отключают пусковое сопротивление только после того, как двигатель достигнет частоты вращения, близкой к номинальной.

К сожалению, при использовании способов включения трехфазного двигателя в однофазную сеть с помощью активного сопротивления можно получить от двигателя мощность, не превышающую половины его номинальной.


Включение двигателей постоянного тока в сеть

В домашней мастерской, оснащенной станками с электродвигателями, возможно, потребуется подсоединить и подключить к сети двигатели постоянного тока. Для этого существует несколько схем.

Наибольшее распространение получила схема включения с помощью пускового реостата, понижающего пусковой ток, поскольку при включении двигателя возникает пусковой ток, который превышает номинал в 10–20 раз. Обмотка электродвигателя может попросту не выдержать, и это приведет к выходу из строя как самого двигателя, так и других элементов цепи.

Подключают пусковой реостат последовательно с цепью якоря (рис. 100).

clip_image004

Рис. 100. Схема включения в сеть двигателя постоянного тока: Л – зажим, соединенный с сетью; М – зажим, соединенный с цепью возбуждения; Я – зажим, соединенный с якорем; 1 – дуга; 2 – рычаг; 3 – рабочий контакт.

Такая схема наиболее приемлема для двигателей мощностью более 0,5 кВт.

Величина пускового сопротивления реостата рассчитывается по формуле:

clip_image005

где Rп – пусковое сопротивление реостата (Ом); U – напряжение сети (110 либо 220 В); Iном – номинальный ток двигателя (А); Rя – сопротивление обмотки якоря (Ом).

Порядок включения в сеть двигателя постоянного тока следующий:

– рычаг на реостате устанавливают на холостой контакт – 0;

– включают сетевой рубильник и переводят рычаг реостата на первый промежуточный контакт.

При этом двигатель возбудится, а в цепи якоря потечет пусковой ток, величина которого будет зависеть от большого сопротивления, складывающегося из всех четырех секций пускового реостата;

– с увеличением частоты вращения якоря пусковой ток должен уменьшиться, что позволит уменьшить и пусковое сопротивление; для этого переводят рычаг реостата на второй, затем на третий контакт и т. д., пока он не окажется на рабочем контакте (рычаг реостата нельзя долго держать на промежуточных контактах, так как пусковые реостаты рассчитаны на непродолжительное время работы и задержка их в таком режиме приводит к перегреву и выходу из строя).

Существует и порядок отключения двигателей постоянного тока от сети, поскольку выключаются они не сразу: сначала рукоятку реостата переводят в крайнее левое положение (разумеется, двигатель при этом отключится, но обмотка возбуждения все же останется замкнутой на сопротивление реостата) и только затем отключают питание двигателя. Если пренебречь подобным порядком отключения и выключить электродвигатель сразу, то в момент размыкания цепи в ней может возникнуть такое большое напряжение, что двигатель выйдет из строя.


Степень исправности коллекторного электродвигателя

Тот, кто по роду своей деятельности или в силу природного любопытства, имел дело с двигателями постоянного тока, непременно должен был обратить внимание на постоянное искрение, присутствующее на коллекторе двигателя во время его работы.

Само по себе искрение необязательно свидетельствует о неисправности двигателя или о невозможности его эксплуатации, поскольку причины возникновения искрения самые различные: от присутствия почернения на коллекторе или нагара на щетках до неправильной их установки и плохого прилегания щеток к коллектору или повышенной вибрации щеточного устройства.

Практика показывает, что полностью избавиться от искрения на коллекторе не удается даже в тех случаях, если щетки двигателя установлены абсолютно правильно, по заводским меркам, с плотным прилеганием их к коллектору; если отсутствует вибрация, если поверхность коллектора и щеток не имеет загрязнений, почернений и нагаров.

Задача домашнего электрика, работающего с двигателем постоянного тока, – научиться правильно определять степень допустимого искрения на коллекторе. А для этого существуют определенные нормы искрения, зная которые можно без труда отличить исправный двигатель (несмотря на наличие искрения) от того, которому нужна профилактика в ремонтной мастерской.

Нормы определяются по специально разработанной шкале классности, так называемым классам коммутации (табл. 9).

Таблица 9. Степень и характеристика искрения на коллекторе двигателя постоянного тока
clip_image006

Эксплуатация двигателей 1, 1,25 и 1,5 классов коммутации возможна без ограничений.

Двигатели с искрением 2‑го класса коммутации можно эксплуатировать лишь в том случае, если оно происходит только в моменты резкого увеличения нагрузки либо при работе в режиме перегрузки.

Третий класс коммутации ограничивает возможность дальнейшей эксплуатации двигателя. Если и коллектор, и щетки находятся в пригодном для работы состоянии, то такое искрение допустимо только в момент прямого включения без использования реостатных ступеней или реверсирования машины.

Опытный электрик может определить степень возможности дальнейшей эксплуатации электромотора не только по характеристике искрения и состоянию коллектора и щеток, но и по цвету искр, появляющихся на коллекторе:

– небольшие голубовато‑белые искры, практически всегда присутствующие на бегающем крае щетки, допускают дальнейшую эксплуатацию двигателя без каких‑либо ограничений; такие искры характерны для 1, 1,25 и 1,5 классов коммутации;

– появление удлиненных искр желтоватого оттенка свидетельствует о принадлежности искрения ко 2‑му классу коммутации; дальнейшая эксплуатация двигателя возможна с небольшими оговорками;

– если искры приобрели зеленую окраску, а на рабочей поверхности щеток присутствуют частички меди, то эксплуатировать электродвигатель далее нельзя, поскольку имеется механическое повреждение коллектора двигателя.

Единственная ремонтная операция, за которую может взяться домашний электрик, не имеющий специальных знаний по электротехнике, – это замена изношенных щеток. Для этого необходимо снять крышку корпуса мотора и колпачки щеткодержателей, отсоединить изношенные щетки и установить новые, соблюдая тип соединения с контактами (скрутка или пайка).

Прочий же ремонт электродвигателей настоятельно рекомендуется поручить специалистам‑профессионалам, поскольку двигатели и переменного, и постоянного тока – механизмы достаточно сложные и дорогостоящие, чтобы производить на них опыты и эксперименты.